《多边形的内角和》说课稿

时间:2024-01-05 19:42:22
《多边形的内角和》说课稿

《多边形的内角和》说课稿

作为一位杰出的老师,时常会需要准备好说课稿,是说课取得成功的前提。怎么样才能写出优秀的说课稿呢?以下是小编收集整理的《多边形的内角和》说课稿,希望对大家有所帮助。

《多边形的内角和》说课稿1

各位评委、各位老师:

大家好!我说课的内容是人教版义务教育课程标准实验教科书,七年级数学(下)第七章第三节《多边形的内角和》。下面,我从以下几个方面对本节课的教学设计进行说明。

一、教材分析

1、教材的地位和作用本节课作为第七章第三节,起着承上启下的作用。在内容上,从三角形的内角和到多边形的内角和,再将内角和公式应用于平面镶嵌,环环相扣,层层递进,这样编排易于激发学生的学习兴趣,很适合学生的认知特点。通过这节课的学习,可以培养学生探索与归纳能力,体会从简单到复杂,从特殊到一般和转化等重要的思想方法。

2、教学重点和难点重点:多边形的内角和与外角和难点:探索多边形内角和时,如何把多边形转化成三角形。

二、教学目标分析

1、知识与技能:掌握多边形的内角和与外角和,进一步了解转化的数学思想。

2、数学思考:能感受数学思考过程的条理性,发展能力推理和语言表达能力,并体会从特殊到一般的认识问题的方法。

3、解决问题:让学生尝试从不同的角度寻求解决问题的方法,并能有效地解决问题。

4、情感态度:让学生体验猜想得到证实的成就感,在解题中感受生活中数学的存在,体验数学充满探索和创造。

三、教法和学法分析

本节课借鉴了美国教育家杜威的“在做中学”的理论和叶圣陶先生所倡导的“解放学生的手,解放学生的大脑,解放学生的时间”的思想,我确定如下教法和学法:

1、教学方法的设计我采用了探究式教学方法,整个探究学习的过程充满了师生之间,生生之间的交流和互动,体现了教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。

2、活动的开展利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。

3、现代教育技术的应用我利用课件辅助教学,适时呈现问题情景,以丰富学生的感性认识,增强直观效果,提高课堂效率。

四、教学程序设计

1、本节教学将按以下六个流程展开创设情境引入新课↓合作交流探索新知↓自主探究得出结论↓尝试练习应用新知↓归纳总结形成体系↓分组竞赛升华情感

2、教学过程

互动环节互动内容设计意图1创设情境引入新课

(1)在一次数学基础知识抢答赛上,王老师出了这么一个问题:某个多边形所有的角加起来等于它的外角和,那么该多边形是几边形?小明同学仅用几秒钟就解决了问题,你能吗?

(2)(演示教具)用四块大小形状完全相同的四边形可拼成一块无空隙的纸板,你知道这是为什么吗?通过今天的学习,我们就能明白其中的道理,引出课题。

这样一开始就利用抢答赛问题以及教具演示实验来提问设疑,学生很容易发问:这个多边形是几边形呢?用四块大小形状完全相同的四边形可拼成一块无空隙的纸板,为什么会产生这种效果呢?从而可调动学生的学习兴趣和注意力,创设恰当的教学情境。

2合作交流探索新知

(1)问题:三角形的内角和等于多少度?外角和等于多少度?长方形的内角和等于多少度?正方形的内角和等于多少度?

(2)问题:任意四边形的内角和等于多少度呢?你是怎样得到的?你能找到几种方法?

(3)学生思考,并分组交流讨论,教师深入小组参与活动,指导、倾听学生交流。

(4)学生分组选代表展示小组的探索成果,师生共同进行评判,对学生找到的不同方法要加以及时肯定。

学生可能找到以下几种方法:

①“量”—即先测量四边形四个内角的度数,然后求四个内角的和;

②“拼”—即把四边形的四个内角剪下来,拼在一起,得到一个周角;

③“分”—即通过添加辅助线的方法,把四边形分割成三角形。

教师在学生展示完后提问:

①在“量”、“拼”、“分”这几种方法中,哪种方法操作简单又相对准确?

②我们刚才找到了几种不同的辅助线的作法,它们的共同点是什么?

先回顾三角形、正方形和长方形的内角和,促使学生对新问题进行思考与猜想。

从简单的四边形入手,让学生亲自操作寻求结论,易于引起学习兴趣,鼓励学生找到多种方法,让学生体会多种分割形式,有利于深入领会转化的本质——四边形转化为三角形,也让学生体验数学活动充满探索和解决问题方法的多样性。通过交流,让学生用自己的语言清楚地表达解决问题的过程,可以提高语言表达能力。

3自主探究得出结论

(1)问题:用刚才类似的方法,你能算出五边形、六边形、七边形的内角和吗?

学生先独立思考,分组讨论,然后再叙述结论。

(2)问题:依此类推,n边形的内角和等于多少度呢?让学生自己归纳总结,得出n边形的内角和公式为(n—2)·180°。从探索四边形的内角和,到五边形、六边形、七边形乃至n边形,通过增强图形的复杂性,让学生体会由简单到复杂,由特殊到一般的思想方法,再一次经历转化的过程,同时在分组交流的过程中,感受合作的重要性。

4应用新知尝试练习

(1)想一想:如果一个四边形的一组对角互补,那么另一组对角有什么关系?为什么(教材88页例1)。

(2)算一算

①教材89页练习1、2。

②四边形的外角和等于多少度?

③五边形的外角和,六边形以及n边形的外角和呢?

(3)读一读先让学生阅读教材89页最后两段内容,然后我再用课件展示。通过做例题和练习来巩固新知识。先求四边形的外角和,再求五边形、六边形以及n边形的外角和,我提出阶梯式的问题,让学生逐步归纳得出多边形的外角和等于360°。这两段是新增加的内容,从另一个角度增加对任意多边形外角和理解与认识。这样处理,注重教材阅读学习,同时用课件演示更加形象直观,便于理解。

5归纳总结形成体系我从以下几个方面引导学生进行小结:

(1)现在你能解决数学知识抢答赛上,王老师提出的问题了吗?你知道为什么能用四块大小形状完全相同的四边形拼成一块无空隙的纸板了吗?

(2)这节课我们学习了哪些知识和方法?你有什么收获?让学生运用所学知识解决引问中的问题,提高解决问题的能力,鼓励学生畅所欲言总结对本节课的收获和体会,有利于培养归纳、总结的习惯和能力,让学生自主建构知识体系。

6分组竞赛升华情感

我制作了 ……此处隐藏13681个字……,先让学生求“四边形”的外角和,再探索“五边形、六边形,以及n边形的外角和”。这样处理仍然是为了体现学生的自主探索,使学生学习变“被动”为“主动”。

③作业采取分组竞赛的形式合作完成。这样,在情感上,本节课学生由好奇到疑惑,由解决单个问题的一点点快感,到解决整个问题串的极大兴奋,产生了强烈的学习激情。这时,一次有效的教学竞赛活动,使学生的学习激情得到释放,学科个性得以张扬,教师可稍加点拨,适可而止,把更多的思考空间留给学生。

以上是我对本节课的设计说明,不足之处,请各位指正,谢谢!

《多边形的内角和》说课稿7

各位领导,各位老师大家下午好,很高兴有机会参加这次教学研究活动。

我的教学设计是华师大版七年级数学(下)第八章第三节"多边形的内角和与外角和"。根据新的课程标准,我从以下七个方面说一下本节课的教学设想:

一, 教材分析

从教材的编排上,本节课作为第八章的第三节是承上启下的一节,在内容上,从三角形的内角和到四边形的内角和到多边形的内角和环环相扣,前面的知识为后边的知识做了铺垫,知识联系性比较强,特别是教材中设计了一些"想一想""试一试""做一做"等内容,体现了课改的精神。在编写意图上,编者有意从简单的几何图形入手,让学生经历探索,猜想,归纳等过程,发展了学生的合情推理能力。

二, 学生情况

学生上节课刚刚学完三角形的内角和,对内角和的问题有了一定的认识,加上七年级的学生具有好奇心,求知欲强,互相评价互相提问的积极性高。因此对于学习本节内容的知识条件已经成熟,学生参加探索活动的热情已经具备,因此把这节课设计成一节探索活动课是切实可行的。

三, 教学目标及重点,难点的确定

新的课程标准注重学生所学内容与现实生活的联系,注重学生经历观察,操作,推理,想象等探索过程。根据新课标和本节课的内容特点我确定以下教学目标及重点,难点

【知识与技能】掌握多边形内角和与外角和定理,进一步了解转化的数学思想

【过程与方法】经历质疑,猜想,归纳等活动,发展学生的合情推理能力,积累数学活动的经验,在探索中学会与人合作,学会交流自己的思想和方法。

【情感态度与价值观】让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造。

【教学重点】多边形内角和及外角和定理

【教学难点】转化的数学思维方法

四, 教法和学法

本次课改很大程度上借鉴了美国教育家杜威的"在做中学"的理论,突出学生独立数学思考活动,希望通过活动使学生主动探索,实践,交流,达到掌握知识的目的,尤其是本节课更是一节难得的探索活动课,按新的课程理论和叶圣陶先生所倡导的"解放学生的手,解放学生的大脑,解放学生的时间"及初一学生的特点,我确定如下教法和学法。

【课堂组织策略】利用学生的好奇心,设疑,解疑,组织活泼互动,有效的教学活动,鼓励学生积极参与,大胆猜想,积极思考,使学生在自主探索和合作交流中理解和掌握本节课的有关内容。

【学生学习策略】明确学习目标,在教师的组织,引导,点拨下进行主动探索,实践,交流等活动。

【辅助策略】利用多媒体课件展示三角形内角和向多边形内角和转化,突破这一教学难点,另外利用演示法,归纳法,讨论法,分组竟赛法,使不同学生的知识水平得到恰当的发展和提高。

五, 教学过程设计

整个教学过程分五步完成。

1, 创设情景,引入新课

首先解决四边形内角的问题,通过转化为三角形问题来解决。

2,合作交流,探索新知。

更进一步解决五边形内角和,乃至六边形,七边形直到N边形的内角和,都能用同样的方法解决。学生分组讨论。

3, 归纳总结,建构体系。

多边形内角和已得出,对外角和更是水到渠成,这时要适当的总结,让学生自己得到零散的知识体系。

4, 实际应用,提高能力。

"木工师傅可以用边角余料铺地板的原因是什么 "这既是对本节所学知识在现实生活中的应用,又是本章第一节的延伸,同时也为下节打下了一个铺垫

5, 分组竞赛,升华情感

四组不同难度的电子试卷,既巩固本节课所学的知识,又使学生本节课产生的激情得以释放。

六, 板书设计

板书本节课学生所需掌握的知识目标:即多边形内角和与外角和定理

七, 创意说明

本节课在知识上由简单到复杂,学生经历质疑,猜想,验证的同时,在情感上,由好奇到疑惑,由解决单个问题的一点点快感,到解决整个问题串的极大兴奋,产生了强烈的学习激情。这时,一次有效的教学竞赛活动,使学生的学习激情得到释放,学科个性得以张扬,教师稍加点拨,适可而止,把更多的思考空间留给学生。

《多边形的内角和》说课稿8

(1)在一次数学基础知识抢答赛上,王老师出了这么一个问题:某个多边形所有的角加起来等于它的外角和,那么该多边形是几边形?小明同学仅用几秒钟就解决了问题,你能吗?

(2)(演示教具)用四块大小形状完全相同的四边形可拼成一块无空隙的纸板,你知道这是为什么吗?

通过今天的学习,我们就能明白其中的道理,引出课题。

这样一开始就利用抢答赛问题以及教具演示实验来提问设疑,学生很容易发问:这个多边形是几边形呢?用四块大小形状完全相同的四边形可拼成一块无空隙的纸板,为什么会产生这种效果呢?从而可调动学生的学习兴趣和注意力,创设恰当的教学情境。

(1)问题:三角形的内角和等于多少度?外角和等于多少度?长方形的内角和等于多少度?正方形的内角和等于多少度?

(2)问题:任意四边形的内角和等于多少度呢?你是怎样得到的?你能找到几种方法?

(3)学生思考,并分组交流讨论,教师深入小组参与活动,指导、倾听学生交流。

(4)学生分组选代表展示小组的探索成果,师生共同进行评判,对学生找到的不同方法要加以及时肯定。

学生可能找到以下几种方法:①“量”—即先测量四边形四个内角的度数,然后求四个内角的和;②“拼”—即把四边形的四个内角剪下来,拼在一起,得到一个周角;③“分”—即通过添加辅助线的方法,把四边形分割成三角形。

教师在学生展示完后提问:①在“量”、“拼”、“分”这几种方法中,哪种方法操作简单又相对准确?②我们刚才找到了几种不同的辅助线的作法,它们的共同点是什么?

先回顾三角形、正方形和长方形的内角和,促使学生对新问题进行思考与猜想。

从简单的四边形入手,让学生亲自操作寻求结论,易于引起学习兴趣,鼓励学生找到多种方法,让学生体会多种分割形式,有利于深入领会转化的本质——四边形转化为三角形,也让学生体验数学活动充满探索和解决问题方法的多样性。

通过交流,让学生用自己的语言清楚地表达解决问题的过程,可以提高语言表达能力

《《多边形的内角和》说课稿.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式